3.6.43 \(\int \frac {A+B x^2}{x \sqrt {a+b x^2}} \, dx\)

Optimal. Leaf size=43 \[ \frac {B \sqrt {a+b x^2}}{b}-\frac {A \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{\sqrt {a}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 43, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {446, 80, 63, 208} \begin {gather*} \frac {B \sqrt {a+b x^2}}{b}-\frac {A \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{\sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*x^2)/(x*Sqrt[a + b*x^2]),x]

[Out]

(B*Sqrt[a + b*x^2])/b - (A*ArcTanh[Sqrt[a + b*x^2]/Sqrt[a]])/Sqrt[a]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {A+B x^2}{x \sqrt {a+b x^2}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {A+B x}{x \sqrt {a+b x}} \, dx,x,x^2\right )\\ &=\frac {B \sqrt {a+b x^2}}{b}+\frac {1}{2} A \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,x^2\right )\\ &=\frac {B \sqrt {a+b x^2}}{b}+\frac {A \operatorname {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x^2}\right )}{b}\\ &=\frac {B \sqrt {a+b x^2}}{b}-\frac {A \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{\sqrt {a}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 43, normalized size = 1.00 \begin {gather*} \frac {B \sqrt {a+b x^2}}{b}-\frac {A \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{\sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^2)/(x*Sqrt[a + b*x^2]),x]

[Out]

(B*Sqrt[a + b*x^2])/b - (A*ArcTanh[Sqrt[a + b*x^2]/Sqrt[a]])/Sqrt[a]

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.04, size = 43, normalized size = 1.00 \begin {gather*} \frac {B \sqrt {a+b x^2}}{b}-\frac {A \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{\sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(A + B*x^2)/(x*Sqrt[a + b*x^2]),x]

[Out]

(B*Sqrt[a + b*x^2])/b - (A*ArcTanh[Sqrt[a + b*x^2]/Sqrt[a]])/Sqrt[a]

________________________________________________________________________________________

fricas [A]  time = 0.97, size = 102, normalized size = 2.37 \begin {gather*} \left [\frac {A \sqrt {a} b \log \left (-\frac {b x^{2} - 2 \, \sqrt {b x^{2} + a} \sqrt {a} + 2 \, a}{x^{2}}\right ) + 2 \, \sqrt {b x^{2} + a} B a}{2 \, a b}, \frac {A \sqrt {-a} b \arctan \left (\frac {\sqrt {-a}}{\sqrt {b x^{2} + a}}\right ) + \sqrt {b x^{2} + a} B a}{a b}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x/(b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/2*(A*sqrt(a)*b*log(-(b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(a) + 2*a)/x^2) + 2*sqrt(b*x^2 + a)*B*a)/(a*b), (A*sqrt(
-a)*b*arctan(sqrt(-a)/sqrt(b*x^2 + a)) + sqrt(b*x^2 + a)*B*a)/(a*b)]

________________________________________________________________________________________

giac [A]  time = 0.37, size = 38, normalized size = 0.88 \begin {gather*} \frac {A \arctan \left (\frac {\sqrt {b x^{2} + a}}{\sqrt {-a}}\right )}{\sqrt {-a}} + \frac {\sqrt {b x^{2} + a} B}{b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x/(b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

A*arctan(sqrt(b*x^2 + a)/sqrt(-a))/sqrt(-a) + sqrt(b*x^2 + a)*B/b

________________________________________________________________________________________

maple [A]  time = 0.01, size = 45, normalized size = 1.05 \begin {gather*} -\frac {A \ln \left (\frac {2 a +2 \sqrt {b \,x^{2}+a}\, \sqrt {a}}{x}\right )}{\sqrt {a}}+\frac {\sqrt {b \,x^{2}+a}\, B}{b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)/x/(b*x^2+a)^(1/2),x)

[Out]

B*(b*x^2+a)^(1/2)/b-A/a^(1/2)*ln((2*a+2*(b*x^2+a)^(1/2)*a^(1/2))/x)

________________________________________________________________________________________

maxima [A]  time = 1.05, size = 33, normalized size = 0.77 \begin {gather*} -\frac {A \operatorname {arsinh}\left (\frac {a}{\sqrt {a b} {\left | x \right |}}\right )}{\sqrt {a}} + \frac {\sqrt {b x^{2} + a} B}{b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/x/(b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

-A*arcsinh(a/(sqrt(a*b)*abs(x)))/sqrt(a) + sqrt(b*x^2 + a)*B/b

________________________________________________________________________________________

mupad [B]  time = 1.02, size = 35, normalized size = 0.81 \begin {gather*} \frac {B\,\sqrt {b\,x^2+a}}{b}-\frac {A\,\mathrm {atanh}\left (\frac {\sqrt {b\,x^2+a}}{\sqrt {a}}\right )}{\sqrt {a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x^2)/(x*(a + b*x^2)^(1/2)),x)

[Out]

(B*(a + b*x^2)^(1/2))/b - (A*atanh((a + b*x^2)^(1/2)/a^(1/2)))/a^(1/2)

________________________________________________________________________________________

sympy [A]  time = 13.20, size = 61, normalized size = 1.42 \begin {gather*} \frac {A \operatorname {atan}{\left (\frac {1}{\sqrt {- \frac {1}{a}} \sqrt {a + b x^{2}}} \right )}}{a \sqrt {- \frac {1}{a}}} - \frac {B \left (\begin {cases} - \frac {x^{2}}{\sqrt {a}} & \text {for}\: b = 0 \\- \frac {2 \sqrt {a + b x^{2}}}{b} & \text {otherwise} \end {cases}\right )}{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)/x/(b*x**2+a)**(1/2),x)

[Out]

A*atan(1/(sqrt(-1/a)*sqrt(a + b*x**2)))/(a*sqrt(-1/a)) - B*Piecewise((-x**2/sqrt(a), Eq(b, 0)), (-2*sqrt(a + b
*x**2)/b, True))/2

________________________________________________________________________________________